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This work was carried out under tasks ZR0130901, IR-159;
SF33354316/18460 and SSP0O77402. The present results and conclusions
on the transition from burning to detonation of waxed granular
explosives should be of interest in the area of explosive sensitivity,
especially as related to the problem of premature initiation.
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DDT BEHAVIOR OF WAXED MIXTURES OF RDX, HMX, AND TETRYL

I. INTRODUCTION

The purpose of this report is to present the data, accumulated
over a period of years, for waxed RDX and HMX as well as two shots
on waxed tetryl. The work has been carried out for various reasons
under various projects. For example, our initial study under IR 159
was carried out on 91/9 RDX/wax {l) and was made to help elucidate
the mechanism of deflagration to detonation transition (DDT). But
for gas loading of explosives (2) to examine their sensitivity to
DDT, the 94/6 mixture was preferable, i.e., exhibited more useful
burning characteristics and predetonation column length for the
desired application., Hence, transition experiments for 94/6 RDX/wax
over the compaction range of 70 - 97% theoretical maximum density
(TMD) were carried out and are reported here. In addition, data for
propellant models* of HMX/wax and:RDX/wax at 0 - 15% wax and
70 - 85% TMD are included. Thus we shall have in a single report
the DDT characterization of all the waxed explosives examined so far.

II. EXPERIMENTAL ARRANGEMENT AND PROCEDURE

The experimental configuration and procedure have been fully
described in an earlier reoort (l). 1In brief, a seamless steel tube
(16.27 mm ID, 50.95 mm OD) with heavy end closures was used. A
B/KNO3 ignitor (l) was used to ignite one end of the 295.4 mm
explosive column.

Chatrge loading, tube instrumentation (ionization pins [;P]
to monitor reaction fronts, and strain gages [SG] to follow internal
pressure), recording equipment, circuitry, and data reduction are
also as in reference 1 with the modification for strain gages given
in reference 2.

1. R. R. Bernecker and D. Price, "Transition from Deflagration to
Detonation in Granular Explosives", NOLTR 72-202, 13 Dec 1972.
2. R. R. Bernecker and D. Price, "Sensitivity of Explosives to
Transition from Deflagration to Detonation", NOLTR 74-186,
7 Feb 1975.

*These propellant models are also explosive models, and, in general,
propellants are a subclass Of explosives.
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_ Chemical materials used for the charges were RDX (834; Class D,

§ « 850u), RDX (597; Class A, § + 200u), HMX (689%*; Class A, § v 200yu),
RDX (659; Class E, & v 15u), tetryl (812; & v 470u), carnauba wax

(134; & v 125u). The mixing procedure was that used in reference 1

for 1 kg batches. When a screen cut of § v 115y was used, it was

. obtained by taking the fraction passing through a 125u sieve opening

and retained on a sieve of 105u opening.
I1I. EXPERIMENTAL RESULTS AND DISCUSSION

A. 94/6 RDX/Wax

Detailed data and records for the shots made with 94/6 RDX/wax
are given in Appendix A. Table 1l contains a summary of the data and
Figures 1 and 2 show, respectively, the effect of porosity on
predetonation column length (&) and various predetonation times as
defined in Table 1.

In addition to providing information about the transitional
behavior of 94/6 RDX/wax, the shots of Table 1 were designed to
determine the most satisfactory of three DDT tubes. These were tubes
prepared from a. AISI 1215 bar steel, b. AISI 1018 seamless tubing
and ¢. AISI 1018 bar steel. f7The 1215 steel was discarded after
several shots because it fragmented into pieces too small to provide
any measure of &. Since there was no difference in the preparation
cost starting with either rod or tubing, the DDT tubes for all
subsequent shots have been prepared from 1018 bar steel. Tubes
prepared from the 1018 steel in earlier work had clearly indicated
an & value generally in good agreement with that obtained from
ionization prebe records. This difference in confining tubes has
been pointed out in case it might have had a small effect on the
results.

Figures 1 and 2 show qualitative trends very similar to those
found in the DDT study of 91/9 RDX/wax (1), as would be expected.
In both cases, & shows an apparent minimum. The minimum appears to
be at 90% TMD for 9% wax and at 82% TMD for 6% wax (Figure 1l).
However, the scatter of data is large and no charges were fired at
71 - 81% TMD in the present study. Hence no firm difference in
location can be established. Finally, the range in & (120 - 2680 nm
in the 9% wax mixture) has been considerably reduced here to 80 -
140 mm. This is to be expected with the increased sensitivity caused
by a decrease in wax content. In the case of no wax, as shown in
Section IIIC, the lower limit is about 40 mm in our apparatus.

*Smaller lots taken at different times from this batch were
designated 900 and 906.
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In Figure 2, the trend for relative* time to detonation (41AtD)
is again qualitatively very similar to that exhibited by the 91/9
mix (i): decreasing with increasing % TMD. However, the earlier
data show a sharp break in the curves (discontinuity of slope) and no
slight increase at the high density end as do those of Figure 2.
The smoother, continuous curves of Fiqure 2 may be a fortuitous
effect of data scatter as may be the slight upturn at the high
density end. Inasmuch as two charges at high % TMD were confined
in slightly different steel tubes, a small difference in confinement
efferst on At could make a plateau area (no change in £ at 88 - 97%
TMD) appear to be a minimum at 93% TMD. Althounh the minima of
Figure 2 may be fictitious, the obvious difference between these
curves and the corresponding ones for the more highly waxed RDX is,
as also is the case for &, the size of the range. The relative times
to detonation are 63 - 610 us for 91/9 RDX/wax; 50 - 170 us for 94/6
RDX/wax. The respective relative times to formation of the post-
convective (compressive) wave 4latp are 40 - 480 us, and 0 - 97 us.
Jnterestingly enough, the difference between the two, 41AtE or
relative time between formation of the PC wave at x = 41 mm and
the onset of de:ionation, is the same order of magnitude in both
cases. But the curve is convex upward for 91/9 and concave upward
for 94/6 RDX/wax, with the latter 4lAtg generally the lower value.
In this case, the curve for the 91/9 mixture is shown as a dashed
line. It was obtained as the difference between values from the two
smoothed curves, Atp vs $TMD and Atp vs $TMD. When the actual
differences in the data of reference 1 are used, the curve is raised
at the low porosity end and nco longer crosses the curve for 94/6
RDX/wax. The general treid of uecreased Atp, Atp, and Atg is again
the effect to be expected with the increased sensitivity and burning
rate caused by the lesser amount of wax.

Finally Table 1 contains data for charges from three batches
of 94/6 RDX/wax; all were prepared in an identical manner from the
same batches of each of the two components. The smooth curves of
Figures 1 and 2 indicate that 94/6 RDX/wax batches 759 and 851 are
equivalent. The check of batch 893 at 70.3% TMD again shows
equivalence, but the results for a 95.7% TMD charge from this batch
does not. This result will be suspect until further charges can be
fired.

B. 91/9 RDX/Wax

Only a few. shots have been fired with 91/9 RDX/wax since the
initial report on its DDT behavior (l). The first was with an 81,3%
TMD charge prepared from coarse (Class Dy RDX, and the objective was
to see if an initial average particle size of about 850y would
measurably change the behavior of 91/9 RDX/wax prepared from a

*Relative to discharge of an ionization pin at x = 41 mm.

10
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regular (Class A) RDX with § « 200u. Figure 3 shows the space-time
plot for the Class D mixture; the additional data appear in
Appendix B.

The coarser RDX mixture results in smaller values of Atp, Atyp,
and . The respective values from Figure 3 are 135us, 50us, and
146 mm. They can be compared with smoothed curve values for Class A
RDX mixtures (1) of 205us, 1ll4us, and 167 mm. The decrease is still
clearly evident when the comparison is made with unsmoothed
experimental values obtained from the regular mixes of approximately
81% TMD (1). Thus, changing the average particle size of the RDX
in the 91/9 RDX/wax from 200u to 850y has increased the speed with
which the 81% TMD mixture undergoes DDT. This in turn we attribute
to an increase in permeability caused by the use of the coarser RDX.

A second experiment was run on the regular 91/9 RDX/wax mix at
the highest density to which it could be compacted in our setup. The
data for this 97% TMD charge appear in Appendix B. In the previous
work (1), two shots were fired at 94.5% TMD, the highest compaction
achieved at that time. One shot exhibited DDT; the other failed.

The results suggested either that 91/9 RDX/wax approached some
critical condition at high density or that the failure was caused by
some undetected flaw in the charge preparation., The latter seems to
be the case since the present charge exhibited DDT with much the same
values of At and & as those found earlier for a 94.5% TMD charge.
Another shot on 91/9 RDX/wax will be reported in the appropriate
series below,

C. RDX

Four charges of pure RDX were fired. They were all handpacked
to 69.1% TMD (1.25 g/cc). The objectives of this work were a) to
examine the particle size effect on DDT of RDX, i.e., Class A vs.
Class E, and b) to ascertain if RDX followed the initially proposed
model for DDT (l). Subsequently, the data were also used as the
100/0 member of the RDX/wax series. The data are summarized in
Table 2 and presented in more detail in Appendix C.

These data show that the fine RDX (Class E, § v 15u) exhibits a
greater predetonation column length than does the regular RDX
(Class A, § v 200u). These results confirm the trend reported by
Calzia (3) for particle size effect of RDX although whether Calzia's
values came from fractional screening, grinding, or reprecipitating
the RDX was not indicated. The present results also confirm the
trend indicated by those of the 91/9 RDX/wax prepared with coarse
RDX (see previous section).

3. J. Calzia, "Experiments on the Deflagration-Detonation
Transition in Condensed Explosives," Compt Rendu 276, 1397-99,
(1973).
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FIG.3 SPACE-TIME PLOT FOR SHOT 603 ON 81.3% TMD 91/9 RDX {850u)/WAX,
Po = 1.37 g/cc.
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Table 2. Summary of RDX Shots

First velocity

. g observed on Predeton. 41
s N Shot Av. Particle pin records column length Atp
R No.¥ Class RDX size, ¥ mm/|s %, mm us
406 A/l 200 0.70 40 0
}
i 911 A/l 200 0.48 45 4.5
704 E/S 15 0.96 60 17
910 E/5 15 0.97 55 11

*All charges hand-packed to 1.25 g/cc or 69.1% TMD.

i e, 28 e e
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The data of Table 2 also show that our usual relative time of
detonation (i.e., relative to discharge time of IP at 41 mm) is not
of much use here. Obviously if & + 40 mm, we will need to have both
IPs and SGs at x < 40 to obtain any data in the transitional area.
Morever, restricting the useful experimental area to less than 40 mm
means that both IP and (especially) SG locations are known to a lower
percent accuracy than usual. Thus for RDX and other H.E. that
exhibit DDT so readily, time and distance resolution with our instru-
mentation is hardly adequate. Nevertheless, we were fortunate enough
to get nearly complete data in one run of the four, Shot 911 on
regular RDX. The data are plotted in Figure 4.

The velocity indicated by the discharge of the first two IPs
is 0.48 mm/us. That is of the proper magnitude to be a part of an
accelerating convective flame front. Similarly, the PC front
velocity at 1.3 to 1.5 mm/usec is of the size to be expected in a
70% TMD charge. (Only one of two possible PC waves was shown in
Figure 4a). Hence DDT of RDX follows the same model as that initially
proposed for 91/9 RDX/wax.

D. Waxed RDX, Waxed HMX Series

Tables 3 and 4 summarize the data for the RDX/wax series at 70
and 85% TMD, respectively. Detailed data and their plots are given
in Appendix D. Summary plots of the effect of wax content on the
predetonation column length of RDX are shown in Figure 5. At 70%
TMD, the reproducibility is fair (see Figure 5a); it is probably
limited at 3% wax by that of charge preparation. At 9% wax, the
limitation is probably both charge preparation and the approach to a
critical wax content for the experimental setup.¥*

The curve £ vs. % wax for the 708 TMD charges is approximately
linear up to 6% wax; its sharp increase beyond that amount suggests
near failure conditions at 9% wax and hence greater variability in
behavior, as noted. On the other hand, 85% TMD charges show
linearity up to 15% wax (see Figure 5b). This result emphasizes the
importance of porosity as well as the accompanying increase in
explosive concentration. Both the 70% and 85% TMD series show
decreasing acceleration of the convective flame front with
increasing wax content. In fact, the charge containing 15% wax shows
no acceleration or, possibly, a small deceleration (see Table 4).

We believe that the pressure and rate of change of the pressure
behind the convective front is responsible for the specific accelera-
tion observed. It follows that the increasing wax content must

react with the HE in such a way as to change the driving pressure,
dp/dt, and the energy per unit volume; these changes are then
reflected in the observed changing acceleration of the convective
front.

*There is also a 2.8% difference in the 8 TMD value of the two charges
at a steep portion of the £ vs % TMD curve.
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Table 5 summarizes the data for two HMX/wax series at 70% TMD;
the series were prepared from Class A HMX and a narrow sieve cut
(§ v 115u) from the same material. Detailed data and their plots
are given in Appendix D. Summary plots of the effect of wax on
the two samples of HMX are shown in Figure 6. The waxed HMX
(Class A) produced & values very close to those of waxed RDX
(Class A). In fact, up to the 9% wax level, the top curve of Figure 6
is a better check for the lower curve of Figure 5 than the replicate
run on waxed Class A RDX. At 12% wax, the HMX showed a stronger
buildup in pressure sooner than did the RDX/wax (neither showed
transition). Both Class A and 115u HMX show a linear increase of %
with % wax only v to 6% wax. At 9% wax, the waxed HMX appears to be
approaching critical conditions in the experimental setup used. 1In
other words the Class A HMX gave a waxed series that closely
paralleled that of Class A RDX in & values. Moreover, the waxed
series of the 115u HMX paralleled the Class A HMX series though at a
somewhat lower value. It seems reasonable to assume that both series
will show a linear increase with wax content at 85% TMD and higher
compactions.

Up to 6% wax, waxed HMX (Class A) cannot be distinguished,
within experimental error, from waxed HMX (8§ v 1l15u) by the & values,
but at higher concentrations the two series can be distinguished
both by % values and the characteristics of the SG records, as shown
in Table 6. Moreover, the fact that the waxed Class A (v 200u) HMX
showed a greater predetonation column length £ than did the narrow
sieve cut (115u) is of particular interest because it is the reverse
of the usual and reported trend of increased & with decreased
particle size. 1In fact it is the'reverse of our own results on pure
and waxed RDX (above) and on fine and coarse tetryl (4). Presumably
the reversal was caused by removal of the fines, but this will have
to be checked.

Because of unexpected effects (such as the above) caused by
the specific range of particle size in the explosive, it is the
preferred experimental practice to work with narrow screen cuts,
i.e., a relatively small range in particle size. However, we found
in obtaining the 115y HMX, that sieving Class A is too lengthy and
too expensive to be practical.

Table 6 contains some of the results from analyses of the strain
gage records. In general, they reinforce the conclusions reached by
considering 2: HMX(A) is very similar to RDX(A) in wax mixtures; it
may have a slightly greater tendency to undergo transition in DDT,
but the present data are insufficient to show a significant
difference. HMX (115u) does show a greater tendency to tran&it than
either of the Class A materials.

4. D. Price, R. R. Bernecker, J. O. Erkman, and A, R, Clairmont, Jr.,
“DDT Behavior of Tetryl and Picric Acid,® NSWC/WOL/TR 76-31,
21 May 197e6.

19




NSWC/WOL TR 77-96

Table 5. Summary of Data for Waxed HMX at 70Z TMD

Shot No. X Wax g/ec Z TMD mm/us mm/us mm us us us
3§ 1154
1605 0 1.32  69.4° 0.9 - 35 0 - ?
1610 3 1.3 70.7°  0.51 1.14 67 22 0o 22
1608 6 1.27  70.4° 0.38 1.06 99 87 3l 56
1611 9 1,23 69.9%  0.38 0.7 143 197 80 117
1615 12 1.19  69.3° 0.47 0.7 273 w569  J255 314
8 v 200p (Class A)

1616 0 1.32  69.4 0.43 1.3 45 1.7 1.2 0.5
1617 6 1.27  70.4 0.23 0.8 119 144 63 81
1618 9 1,23 69.9 0.23 1.1 210 395 216 179
1701 12 1.19  69.3 0.27 0.8 F ¥ F F

a p, = 14902 g/cc

b p, = 1.852

¢ b, " 1.804

d p, = 1.759

e p, = 1.716

f Slope given by data of first two IPg; all curves showed acceleration except

Shot 1615 where curve was linear.

Detailed data for these shots appear in Appendix D.
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Shot Number Fig.

Table 6.

401
1617

1608

411
1618
1611

405
1701
1615

Al
D12

D8

D2
D13

D9

|1 3]
D16

D10

RDX(A)
HMX(A)
HMK(115u)

RDX(A)
HMX(A)
HMX(1150)

RDX(A)
HMX (A)
HMX(115u)

Front
mn/|is

Velocity of
Convective

NSWC/WOL TR 77-96

Details from Records of Some Shots at 70% TMD
(See Appendices A & D)

~a

PC Front o

mm/Js

Velocity Time at’

No. of SG kecords
Indicating Possible

x = 41 mm Shock Formation¥*

94/6 HE/Wax
0.3 0.9
0.2 0.9
0.5 1.1

91/9 WE/Wax
0.2 0.9
0.2 .
0.4 0.7

88/12 RE/Wax
0.3 -—
0.3 0.8

0.5 0.7

80
95
60

500
250
100

900-1000%*
525
375

* Sharp dip, negative (%%); only SGs with x<f cousidered.

**Egtinated from one good SG record at x = 118 wm,

22
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None

None

One
One

Three

One
One
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Of the 6 - 9% waxed HMX shots (both Class A and 115u particle
size) all four shots gave data showing a transition behavior clearly
that proposed initially for 91/9 RDX/wax and subsequently applied
to pure HE as well. The 0 - 3% waxed HMX shots produced less
complete data but were consistent with the original mechanism.

Among the parameters tabulated in the summary Table 5 are
relative times (defined in Table 1l). It is of considerable
interest that there seems to be a strong correlation between Atp and
%, and Atg and &; the latter is linear. This relationship is evident
at a constant % TMD and varying wax content, as illustrated in
Figure 7 for waxed HMX (115u) at 70% TMD and for waxed RDX(A) at
85% TMD. It is of equal interest that no similar correlation appears
at fixed composition and varying & TMD, e.g., 94/6 RDX/wax of this
report and 91/9 RDX/wax of reference 1. However, an analogous
correlation (only the Atg vs 1) appears for several gas loaded
explosives at 70(or 88)% TMD (5) where the variation of composition
is that shown by different pure organic HE.

E. Waxed Tetryl

Data for two shots on waxed tetryl are given in Appendix E.
One confirms the previously reported mechanism for 97/3 tetryl/wax
(4); the other shows a failure of 91/9 tetryl/wax to undergo DDT.

IV, SUMMARY AND CONCLUSIONS

1. The 94/6 RDX/wax series gave DDT data showing trends guite
similar to the 91/9 series with the time ranges for all effects
shortened. In particular, there is a trend for variation of Atp
(relative time to detonation with zero time at first IP, x = 41 mm)
and of Atg (relative time to detonation after formation of PL wave)
with & TMD,

2. 91/9 RDX/wax exhibits DDT in our apparatus at as high a
compaction (97%) as could be obtained with the hydraulic press.

3. Pure RDX exhibits the same mechanism proposed for 91/9 RDX/wax
(1). This is also true for all the waxed nixtures of this report.

4. Class A RDX and HMX are indistinguishable (in our apparatus)
in their DDT behavior. So too are their waxed series.

5. D. Price and R. R. Bernecker, “Method Used to Assess Sensitivity
to DDT of Shell Fills", paper for Conference on the Standardiza-
tion of Safety and Performance Tests for Energetic Materials,
ARRADCOM Dover, New Jersey, June 1977.
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5. A narrow sisve cut of HMX (§ « 115y), made from Class A HMX

(8 « 200u), used in a waxed serfes, showed smaller % values than the
corresponding Class A mixture”. This reversed the apparent particle
size effect found in two Othe. comparisons: pure RDX and waxed RDX.
For these last, the smaller §, the larger &.

6. Correlations between % amd Atp and between § and Aty are evident
for the waxed series at constant porosity (waxed HMX at 70% TMD

and waxed RDX at 85% TMD). These relat’'>ns seem reasonable in that
burning rate and reactivity should decrease with increasing wax
content.

7. No similar correlation beiween & and Atp or Aty is evident at

fixed composition, ijgitial particle size, and $ TMD. Presumeably,
change in permeability has more complex effects on DDT than simple
dilution with wax.
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APPENDIX A

Detailed Data for 94/6 RDX/Wax Series

The distance-time (x-t) data for this series of shots appear
in Table Al. They are plotted as two part fiqures in order of
increasing compaction. In each case, part (a) displays x-t data;
part (b), strain-time data. As in earlier work, open circles
indicate discharge time and position of the custom-made probes; solid
circles, those of commercial probes., Squares are used to show posi-
tion and time of rapid pressure rise, as indicated by the strain
gage (SG) records. Numbers on the SG curves indicate location cf
the SG given as x in mm.

The interpretation and analysis is straightforward, and in most
cases, analogous to similar data in reference 1. An exception occurs
in Shot 801, however. Here & cannot be determined from tube
fragments and the discharge time of the IP at 105 mm is out of line
with those of the later probes showing steady state detonation.

It so happened that a SG was also at about 105 mm; its record

(Figure AS5b) shows the familiar negative slope associated with shock
or shock formation just prior to discharge of the ionization pin

at 105 mm. Consequently an & value just beyond this region was
chosen, i.e. & = 110 + 5 mm places the onset beyond the shock
disturbance region and on the extrapolated x-t curve for steady state
detonation.

In this same shot, an extended (in time) record was recorded
for the SG at 20.3 mm. It recorded a very high strain level
(6000 ye) and maintained it for about 70 us although detonation
began (at x = 110 mm) at 36.3 us on the same time scale.

As might be expected, the records of the 94/6 RDX/wax series

indicate the same mechanism of DDT as the physical model proposed
for the 91/9 RDX/wax series(l).
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bh. STRAIN-TIME DATA.
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e. DISTANCE-TIME DATA (KEY OF FIGURE 4a).

FIG. A5. SHOT 801 ON 94.7% TMD 84/6 RDX/WAX, p, = 1.63 g/cc.
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APPENDIX B
Data for 91/9 RDX/Wax Shots

Numerical data appear in Table Bl. They are plotted in Figure 3
of the text and Figure Bl for the coarse RDX mixture, and in Figure
B2 for the regular RDX mixture.

Figure B2b is a good illustration of the effect of shock forma-
tion on SG records. However, interactions of IP discharges have
eliminated portions of these records. Hence better illustrations
are given in Appendix D.
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Table Bl. Detailed Data for 91/9 RDX/Wax Shots
Shot No. 603° 913¢
Density
glee 1.365 1.63
X TMD 81.3 7.0
IP Data X t 3 t
41.40 0.00% 41.5 0.0
54.10 36.22% 60.6 11.75
79.50 82.71 719.6 25.21
105.03 113.49 105.0 41,21
130.43 131.70 124.1 52.03
155.83 136.73 143.1 60.36
181.23 139.80 162.2 63.16
206.63 143.81 181.2 65.42
232.15 147.24 206.6 68.60
257.55 150.45 232.2 71.78
257.6 74.97
56 Data x tpe x Spe
% 20.19 - 20.7 -
41.65  53.0 79.9  29.8
% 67.05 68.0 105.2 40.3
- 92.71 87.0 130.8 49.0
A 156.0 58.7
B, s/us 0.222
’ 202103, wa/us? 5.891
D, mm/us 7.28 v8.1
o, mn/us 0.17
a py ™ 1.68

b Class D RDX
¢ Class A RDX
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HE X 101

FIG. BY. SHOT 603 ON 81.3% TMD 91/ RDX (850u)/WAX, p, = 1.37 g/cc, STRAIN-
TIME DATA.
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APPENDIX C

DDT Data for 69.1% TMD RD¥, Classes A & E

Data for the four RDX charges are given in Takle Cl. The space-
time plots for Shots 406 and 704 (Class A and Class E RDX,
respectively) are shown in Figqures Cl and C2., The strain-time
records or these shots were short and comparatively uniformative;
they have not been reproduced.

Figure C3 displays plots of both IP and SG records for Shot 910,
the fine RDX. The space-time plot is of interest in showing a com-
pressive disturbance travelling rearward from the location of the
onset of detonation. Since its rate is about that of the forward
moving detonation, retonation seems a possibility. However, tube
fragments at the ignitnr end of the tube from this shot were rot
reported as particularly small nor was a dent in the ignitor bolt
noted. Fon the Class A RDX (Figur. 4 of text) only one point of
a "™ossible rearward disturbance was found on the SG records, but
tube fragments were definitely smaller than usual and the igniter
sleeve was crushed,
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APPENDIX D

Detailed Data for Waxed RDX and Waxed HMX

The first RDX/wax series was reported in reference 1, Since
the SG records were either missing or very poor, they were not
reproduced there. All those of the present series are reproduced
here, and most are good records. Data for the waxed RDX appear in
Table D1; those for the two waxed HMX series, in Tables D2 and D3.
They are plotted in Figures D1-D1l4. As was remarked above, most
of the strain gage records obtained were good. In particular, they
illustrate the effect of rapid pressure buildup.

A sharp dip in the e-t record, i.e. negative dp/dt, and a
minimum is associatcd with appearance of a shock. If the SG is
located at x v &, it is apt to be destroyed e.g. Fig. D4b, SG at
168 mm and Fig. D9b, SG at 143 mm. If the SG is at x > &, the same
type of dip appears before the gage is destroyed, e.g., Fig. Dlb,
SG at 79.3 mm. If x < &, SG records frequently show a dip which
strengthens as x approaches &, e.g., D5b and D9b. 1In this last case,
the minima are associated with shock formation and time readings
are taken at the beginning of the dip and at the minimum; both
readings are plotted on the space~time illustration because we
believe they bracket the actual time of the pressure excursion,

Within this group of records, there is no instance in which
the IP discharge seems to be affected by shock formation. However,
this does occur occasionally. We do have one record (Fig. Dl0a)
showing peculiar pin discharge times., The companion SG records
(Fig. D10b) show appreciable electromagnetic noise and interference
in the interval 280-460us which includes the questionable discharges.
Hence we attribute them to EM disturbance.

As might be expected, both waxed series conform to the physical
model of DDT developed for $1/9 RDX/wax.




"A12A1309ds23 ‘sit pur Wm 91T 3 PUF X 3O s31Uf
p20221 g1 WO1j WM §OZ<

sjuewB®1y SqRJ WOIY WK Gf [xy

2qoid SprPEL-WOISN)Hy

- - - %0°0 (snjum)p
89" L9 L a Lo Ly  (srt/am)q
- = 71- 0+ .
€+2€7 $+9LT i 102078 el : ()
92¢-G1¢€ €6°€61
80€-06C <% G661 912 ¥°891
08¢ 09°(LT11 L61 € 0€1 punogy £°90¢ £ L9 £ 6L
06T (L£°6L 691 ¢ 6L 2ABM 0°601 £E€C-126 8°¢Y1 0¢ £ %S
007 Z£°0T 1Z1 €702 5d ON 9°8C £9% 2°26 vz <82
% 0d3 % ody x 0d5 x 0d5 b Ddiy E3 :B3BQ 9§
~
- e 69°€97 CETYT 0¢€° 16T 9°689 %°L6T 6°86¢ %°¢€9Z 0°%6 (SN AYA
m SETGHE  09°%%Z L%°GET 06°90¢ SR LT9 0°¢¢? VLSS 1 °%%E SLY8 647907
mM 6L°LY¥E 66°6TC 0e£°1€2 O1°181 - 9°602 9'6CG  6°1¢2 £ LL c6°661
0"1i¢c¢
% I6°6Z€ 06°90¢ 61°%ZC 0L°6GT 6°GLY T°181 16 Z2°0%6 $° 902 £°¢L 56°0¢1
& I%7°%0€ 08°¢61 6€£°96T OE°0¢T 8°00% 8°¢¢1 87106 11871 9769 D°S01
67°LST 0%°891 266" HST  06°%0T1 -~ 7°0€T 8°GEY  L°6ST 8749 2°¢6
¥16°C1C 00°¢g¥w1 ¥C6°CIT LE 6L - 0°¢01 7°29€ T°0¢1 L°69 C 6L
#G0°09T 097 /11 »%6°6S 01" %¢ - 9°6L 0"16¢ B %01 2°%9 8°'99
*90° 8L 0¢° 6L »61°%¢ o7 1Yy ¥G0° LG 1°%¢ #»0°GCT 6799 »[°€C 1°%6
x0°0 0% 1% x0°0  61°87 x0°0 %1% *0°0  1°1% *0°0  $6°82
3 X 3 = 3 X 3 x 3 % 1®3BQ 41
ST 1 1 076 0°¢ xeM ¥
6" %78 7768 1 A 9°7¢L 6" 0L adl X
79€° T o1 0LT1° 1 XA/ | vl 1 oo/%
:£K318uaq
<06 STy soY 1% 40% :zoqunN 30Ug

89TI9g XBM/X@Y %03 ®BIEQ P3[183I30 - 1d 21qEL

¢ N A S U g

34




O
[«
1
~
-~
[«
12
[}
g
~
2
wv)
4

saBM uoIlBUO3IAP 3O 9Bweswd o3 (si 1+) puodsaiiod puvB VTIUIHes
aqoad SpEFU-WOIYN)Dy

£1°0 - %0°0
€9°9 ¢ ir 08°9

1+66 1449 1+5€

0°8Z1 T°%Z1 0°LS-2°1S 9°88

L°06ZT 0°601 $6‘1°8% L°69 £ 69
0°10T 8°6L 1°6Z % 0% £°0¢
G°9L %S g°61 2°1¢ rA £
¥y 9702 - v rARA
odj x odg % £ 3 z

L 99T 97 LST L tL 8152 97162
GT"LET 8902 L°OL 0°10T % 0E1
GLTZET % 181 899 <" 181 0" o1

€671 07951 0°€9 1951 726

L°SZT 9°OET 965 L°0€1 97 6L

9:7Z1 7 60T %$%°95  £°60T 6°99
#6°011 8°6L *1°€S 6764 A
*L°19 %7 4S %6°TY 7798 S 1Y

¥SL°EE STV *L°9T L°1Y 8" 8z
x0°0  8°8C %0°0 0762 191
3 X 3 x x

0'9 0" ¢

¥ 0L
L9t°1

(s umyo
s (srifam)a

T(EB)Y

:83Bg 98

:e3Bq 41
xvM
AL 2

:20/3
K311suaq

1191 8091 0191 5091

:23q@ny I0Y$§

YHH (TSTIT » 9) 3IND 34918
moiieN woxj paiedaagd 821138 Xem/XKH 10F BIBQ poiie3lag -"zd 21qEl




NSWC/WOL TR 77-96

2go3d PpRET-TOISNIy

- - - r(srjux2)o
4 L' 9nr 1t 6 9, D(srijmmyq
E 1+012 T+611 1369 D(@m)y
GcL9 77181 LGE-ERE O EVT
LEQ 7671 0TE 6°LTT - 27601 €°CH-9° 1% ¢ 69
009 9°L11 067 6°¢8 16T 1°L9 § 950y % 0§
165 ¢ 6l 9%Z T %S 921 0°8% 9 LE~Y"LE %' 1¢
- VANITA - %02 86 9°0¢ 1°12 £ 71
0da x odg x o433 X oda F3 :e3eq 9%
GZ LeE €799 9°81C 0°%9¢ a 1L %°L5T
1°49S 0°%9C L°T6E %°CEC 6°60Z L°891 sy 78 70t
$§6°91¢ 1°6%C 8°88¢ 074107 0°720C ¢£7°¢91 C1 oY 07601
s ey 9°61C 1°12€ 97181 7°661 T %21 A4 £°26
£°78¢ T ve6l LTt T°9st 0°T61 7°601 e 6y 5°6L
G0°91¢€ 8°891 1°49C L°0tT 2G60°991 1798 8Ly 6° 99
xGWYT Y¥EVIT x1°01C €°601 #8°L21T 17L(9 267°2% 196
xL°891 O0°811 x€°TYT 6°6L 9°¢6 %°¢¢ %9°6¢ 91y
x[ €6 G°T6 x3° %8 8°09 PYAR A9 L1y %GL 762 L°8Z
x0°0  1°L9 %0°0  L'1% %0°0  0°62 #0°0  0°91
g x 3 X 3 x 3 "3 :g38Q dl
0°71 0°6 0°9 070 XeM X
£°69 6°69 0L %°69 51 R4
S61°1 TT1 €LT°1 zze 1 :02/23
K313u9d
T0LT 8191 L1917 9191 :Iaquny JoYs

YRH V 8s®BID woijy poaaedoiq so13aag Xem/IGH 303 ®IBQ PI31I%ISQ

“gd 214981

& T AT

SR

.




R e LR

EE———

NSWC/WOL TR 77-96

"2/6 GZ°L = °0 ‘KVYM/XCY €/£6 QWL %60L NO Y0V LOHS "0 "Did

‘(ep 3HMDIZ 40 A3M) YIVG IWIL-3DNVLSIO ®

(aLv
JHNADI4 40 AIN) VLVA IWIL-NIVHLS 9
{s)3 {(s73
08 02 oy 0z 0 o8 ov 0
0st- T T T T T
< xrs —~0
gnﬁﬁ)xxx.\ P o
y o 0
€6L .
eva C .
- 061 >
- 3 5 —
" 5'8¢ i 24
: £ (wux [O0C oot
: £
: | ooy x
x m — m
« f E 3
ool - 619 ST £2°9
- - 0SL
= . - 006
o - 0S0L
L 002ZL

47




AR A

NSWC/WOL TR 77-96

"99/B ZZ°L = °J ‘XYM/XQY 6/16 QWL %E0L NO LtY LOHS 20 "Sid

(e IUNDIS 40 ATN)
ViVQ 3WIL-IONYLSIQ 8

‘(9L FHNDIE4 40 A3M) V1ivd 3WIL-NIvHiS ‘9
(s
(s
ovS 00s = o9y @ oy  OsE

..x\'lwi ..... - o
.- ..\.\u\ll.u....a:- e as ¢ e o e »oae .
; -~
- 4\

;

H




09/6 GZ°L = 0 "XYM/XAH Z1/88 QWL %E'LL NO SOY LOHS ‘20 °Dtd

(v 38Nt
(‘98V 3YNDI4 40 AIM) VLVA IWIL-NIVELS ' 40 A3M) VAVG 3IWIL-IONVLSIO
(s7)3 {s3
000L 026 oy ©08L 089 009 09 009 ooy 002 0
[ R N R W W A N N S N T T T T
& B o
N 0
\."(\nl;'ls‘%l... P I R L propee 2
= i L. S o o™ o
3 YL ¥
= , osz [ 9% I - oot
(&) L3
~ 1) X x
W ’ () [ x ] g
L 009 °
: n — 002
[~ o
o006 @
: _ | i L oos




NSWC/WOL TR 7796

02/6 Op°L = °9 ‘XVAY/XAY ZL/88 QWL %2'S8 NG SL¥ LOHS 'vQ "Oid

9LV IUNDI4 40 AIN) vAVA IWIL-NIVHLS 49

(s
ovz 002 0ot oz1 o8 N
l 1 | | I L J | i J 051~
N ~ . om ) . .
. i _ 051
: —
-; .\. REEEL 4} 11 Eq.!:.l =
-.- \.u \..I-\: ~h:~u~..: v.gw
< An N e m-gF
P 7 coc o
. / £02 x
/ i
\ns um
..__. — 0G4
: ’ i i
: {
. ... - 0501
; i
-

(29 IUNDIS 40 A3NI VIVO 3WIL-30VdS ®

(s
oae ool 0
1 |} ] ¥ I i
— 0
/ - o ©
’ O ]
srijuius 6°L u O
! wuwgsry "
.d 3 —
— 0CG2
stijuu: 6o

(ww) x

50

T e S LMt S e a2




"29/B 9€°L = °d ‘XVM/XQY G1/G8 GIWL %58 NO 505 LOHS 'S0 "D14
(e 3UNDOIL
40 A3N) YLVS 3WIL-30%dS ©

(s

NSWC/WOL TR 77-96

(ALY 3HNOI 40 AIN) VLVA IWIL-NIVHLS 9

(s

08t

ot
. 05tL-

00t 092 02
[} 3 11 . 3 3 [ 1
\\m.ﬁ@—.v

P N R
P L LR A i

%
Fom n
e e Aen n w A

PP SR B

~v6L

z

9L
9L

002
i

T I

o0y

r

tifom ;
- 0 ]
\ ~— 001

sijww g°|

002

0oL

»
"
s
x H LAk A A AarA ur\nu.wxuu\n.ha * X2
- \! ‘l-
< > al
x : i 2 -
» 4 2
A 2
. S L E02 / o)
x - » H v as « w4 e
x - PTY .l v
El : * ;'tc- Arcswx I~ va LY \ O
< N z \\\.t. -
A cb
: . . . /! ®
L3 a 2 '9 -
% " . x o
.
b a z o —
x . a 2 0; ]
. N . - 062 uhu Ze2
R R °
» A » - N
x L3 - »
.
o . o I sTjuIw £ g —
x ” A x L
J < s o
x Y R 2 '0
o
y * Tl - 0501
" s -
x R a .
<




NSWC/WOL TR77-™8 )
X |
55 |
é )
oy
> .
— 4“——_8 §
N
NN Ny
! . NN NN - X x x X XX XX XXX x & -
: ))‘?fyyﬂh)h}"‘rxy»).).,,; L ) l*;’wxxxxxx o <
' h NMHHM?’ ™y ? # -N Q ‘3
N i 4 &
) % § $ 2 o
% : = . % -2 o
Eiev N% M 03re €3
g E] ) cid g <
§ hed ™ ;‘_ 0 L4 w 5
- b4 X o 8
- B x b >
o 2 o O
% 1 T 1 ! T : ) 3 8
@ o @ 3 x . |
" N = S ? v
' 1]
0L X an & !
-3
F A
3
( ) : :
. w
; 3 §
o} .
s g % Ay
’ — i - T
5 3 |
k > o
w 8 =
. % g S g‘ e :
- ; ’
< .
®
- @ )
i 8 7
. g ]
€« L =]
‘ &
o i < c
] ‘ ‘6 N S
{ww)x
| i
] S
S E

2
! 52 . Yy




96

NSWC/WOL TR 77

03/6 Lg°L = °0 ‘KVM/XWH-TISLL €/£6 QWL %L 0L NO OLSi LOHS

9y 3UNDIL
30 A3} VLVA INIL-NIVHLS 9

(s
08 oy 0
i f L 1°0-
Y%Xxxaaxx:axx XX XX X x ¥x
9°88
w.‘i‘gluuil W MM e e
* 1°69
* % A A >>rvr-»)y -
L] 2 zzzz 2227
< = o
" . Nw otefﬁfavvv 60
N o ZeL
s ¥ (wieur) x
I |
x> B
- 4
“Jz .
Lz -5
2%z

oy X Ky
% >
L2
N N

0L x 311

cs8

Qo4

ey 3UNOIA 40 A3N) YIiVQ IWILL-IDNVISIG B

(s
0g , oy




NSWC/WOL TR 77-96

29/B £2°L = °d “}VM/XIWH-TGLL 9/06 QWL %$'0L NO 8091 LOHS ‘80 'Oid

(LY 3YNDIA 40 AIN) Yiva INIL-NIYHLS 9 (Bp 3BNDIL 40 ATIN) ViVA IWIL-IONVLISIO &
s7)}
(s7) (s

oct 08 ov 0 oz op
I { [ 1 i oStL- r q—‘ . o_w r T

xxx-xvnxnxxv-inxll»ﬁl L d
Hcvt- Pru K& X A My vy KN pam Ay l-m“quMt—h' - g\EE 80”\&‘ o om
s oaa .. 0780L -,
Mor A O\b\ W 66

e e - oSt

t rafzz zz X = X 3

M P
x fé‘? e

X

¥

e %y
T
n
-
N
.}
N
M
-
%

»

.‘N
-
]
Q
e}
-~
{ww)x

" * Nunu o ®
: w90z | ogp

an

x ) QO‘. pe
sjww £9'9

- 0601




NSWC/WOL TR 77-96

At s e

0ee

B ET'L = °0 ‘XKYM/XIWHTGLL 6/L6 QWL %6'88 NO L1SL 1OHS ‘60 'Did
(8P IUNDid 40 A3N) VIVG IWIL-IONVLSIQ ®

(s

(ay 3HNDIL 40 AIN) VAVA IWIL-NIVHLS 9

(s)3
% 08l ovL
| B 1 |

0oe

0oL

f

LA AAA NG AT

?"IYI LR 3§}

«ﬂxxxxxxvuﬂ X x> 0w =
KW N X YN Y W » a4 u-ﬁ--&
'Ly
ANs Ao mra o o

sTijwu 9

{ww)x

£
M ?i:.?»vr‘ryv»)
X
2 ..
= 2
2z
) e g zz @ 3 3z T ® x
» A 2% -
x.
i AR ERPN
. 4 PRI S
» N
H A 902
» A 07 7
N A =
- (W x
o oA 2
» * a
» o A
x [N z
£ a
. » 2
x
* PP ]
H
- &z x
- -~
x L 7
- z
» e
x e » 2
PPl -
z
- ® A x
bl *
* Py 4
* [N
- rs A
» 4 L2
» . z
yroro. —6°C
z
® - >
. » K
¥ . PO 4
- £y N
L ry x
LIP3 x
N a
. z
<@
° z
S

€€




‘6L°L = %0 ‘XVM/XWH7GLL 21/88 QWL %E'63 NO G191 LOHS '0LQ "9id

{ep IUNDIS
(9% 3HNDIF 40 AIN) VAVA INIL-NIVELS g 40 A3H) ViVQA IWLL-IONVLISIO ©
(s)3 (+)3
ovs 00Ss 09Y oy o8t ove oo O0v o0z 0
I 1 1 — | | | | i 1 1 | I 1'0- I i H 1 J ]
w-FmP x " w » x » * P x * . » - .
S can am - - » ] " . »
© Yaas «
n tn y..u. o ..n » ] . . . 3 - X .
2o AR o’ K-n-\l.-ou w) M * ’ d ’ M - ° £t -
| : o B
i . .t *
o *~ s M u. -
2 e \
o . f X
> iy re
< 02 5 .




NSWC/WOL TR 77-96

JHNDIY 40 AIM) ViVA INIL-NIVHLS 9

30/6 2L = °d '{V) XWH %t'68 NO 9181 1LOHS

(av

(s
0z 0

3 (1 i -

s % 3 x
569

H b DX IR
. Hﬁf
* ¥as
- tr‘» N N Coaka 4 =
* > yLe azrr =2
* 22T LIZ L ZR2Z
R s gzL  —
. 60
« 2 (wi)x
* »
x A
* *~ —
e
3
£ 5
i Loox
un. 6L
Z e
w

_"N
»‘“quu N NN

L
KX K AN WAXK A F N A LB A -

Feuam 40 % » 45 9% +q

‘110013

"(BY 38NDI4 40 AIN) VIVG IWIL-IDNVLISIO

{1

L0

-6'¢C

sjwiw ¢'9




NSWC/WOL TR 77-96

00¢

938 £Z°L = °0 "XVM/(V} XIWH 9/96 GINL %9'0L NO L1291 LOHS '2tQ "Did

(ALY 3UNDOI4 40 ATN) VLVA IWIL-NIVHLS 9

(B 3HNDI4 40 A3N) VIVG 3WIL-IINVLSIO ®

(s7) 5"
091 oL o8 ov 0 00z 0oL 0
] | ] ] ] ] ] 1 | 0Si- - T - T - 0
. . o w..w,w o O
o [— <! Y ]
129 juiw 2g 0 o
; I o5t 0
: 0’8t o
) * ) PR I RV . Lo mFP 3 8"
S et g ~ 3 —
unu~<-- - it} x —
N (i) — QgY
'4 invhu
Ll sTijusw oL
— 0G4
) 00t
I
% B

(W) x

1
3
N‘..
£
¥




NSWC/WOL TR 77-96

(9 3YNDIF 40 A3N) VIVA IWIL-NIVHLS 9

"09/B2Z°L = ®0 ‘XvM/(V) XWH 6/L6 WL %P'68 NO 8L9L LOHS '£1Q ‘Did
{29 IUNDIS 30 AN} YAVA 3WIL-IONYLSIQ ®

(s
one w o

i f 1 5

(s)3
L _ ] I 1 _ 1 i ! o
xn.dmfrxxx x %X x X X > x X X X x XX P = « " "
: L1 4 §
H 5\,‘: e ¥ M RE R ¥ »- « -- x v ¥ = a > > QNNF m. . w O
“ n..vN x&\v.»’, . y a z 2 2 3 x I Zza 7 rx ummm,,m raz2a A Qi\EE mcow \h O
rx .m.-. h) z NéNnN.tnN 2 H 2 i . . . . , , . . ~ uvm . b mco Q O
Pt voe oot
& {wieyx / (@)
R 4 ‘ = P o
A s | o
i { o @ -
o0 61 2
S ox 2 > o
SR ] sz oo
Pl : -
S —~6C sljusins £°9
.
ﬂ X

59

{ws)x




NSWC/WOL TR 77-96

"09/B 6L°L = °J ‘XVM/(V) XINH Z1/88 QWL %89 NO 10LL LOHS “$LG 'Did

(P 3UNDIS 40 AIN) ViVA IWIL-NIVHLS 9 (B¢ 34NOI4 4O A3N) VIVO 3WIL-IONVLSIQ @8

{s7p (57133
0zL 089 (07743 009 08g
] i i ! | i ] ! Lo 009 oY 00e 0 o
« x x «  x = x . " , ¥ ¥ H 14 3 14 I
o
N S
°._.vn. m. s W-mw.m-u..wu LS . . N L 80 D
ST -1 601
Oov . wn " [ m
- - g x
: w . u s7ifui $2°0 w..
VI8l £ 1 1 3
— 6 ’ .
. = sjuwsw £8°0 O
: s -yat = ~U °
; NERS 3 —j 002
‘voz - e © o
” nu “ - m.N ‘ ]
o L
PR 414}
z p—
G'6L,
: — 6'E




NSWC/WOL TR 77-96

APPENDIX E

DDT Data for Waxed Tetryl

Two shots on waxed tetryl are reported here; the detailed data
appear in Table E-1. Shot 618 was made at 75% TMD of 91/9 tetryl/
wax. This material ignited and showed convective flame spread
initially at 0.3 mm/us, with decreasing speed until its failure

= 105 mm, the location of

somewhere beyond x = 80 mm and before x =
It did not, of course,

the first IP which showed no response.
exhibit DDT (see Fig. El). This waxed tetryl is considerably less

susceptible to transition in our setup than is the comparably waxed
RDX at 75% TMD(1l}.

Shot 1606, 69.4% TMD 97/3 tetryl/wax was made to assess further
the results already reported on this mixture(4). The present results,
plotted in Figure E2 confirm the previous ones in value of (227

vs 238 & 258 mm), rate of convective flame spread (0.3 vs. 0.2 mm/us),
and apparent conformity to the transition mechanism devised for 91/9
RDX/wax. It differs only in the velocity of the PC front (2.4 vs

1.6 mm/us) which is attributed to a greater compaction of this charge
during the initial slow burning. (The difference could result from

a difference in the properties of the confining tubes used in the

two cases. Although tubes are bought under specificationg, they

are not tested for strength prior to use.) However, the qualitative
pattern of SG curves in both shots of reference 4 and of those in
Figure E2b is very similar. The evidence to date indicates that
addition of 3% wax to the coarse tetryl has modified the initial
portion of the transition so that it now comforms to the physical

model of DDT(l).
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Table E1. Detailed Data for Waxed Tetryl Shots

Shot No: 1606 618
Density
glec: 1.174 1.210
Z T™MD: 69.4 74.6
pv glcc 1.692 1.623
% Wax 3.0 9.0
IP Data: X Lt X t
4.1 0.0% 28.7 0.0%
79.5 29.8% 41.4 50.85%
104.9  105.9% S4.1 113.6%
130.3  196.35% 66.8 166.8%
155.8  256.3% 79.6  340.9
181.8  304.2% 105.0 -
206.5  337.35% 130.4 -
225.7  347.55% 156.0 -
264.7  351.15 181.4 -
263.8  354.2 257.6 -
S5G Data: 79.6  293.5 Very little output;
117.5 296.5 records not read.
149.6 310
181.2  3356.5
206.5 334
£ (tren) 227+1 i
D(ema/us) 6.3 F
Predet. Front
Velocities
(mm/ps): 0.3, 2.4 0.3 to 0
atplus) >248 F

¥ Custom-made probes
*Pailute
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